LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER – APRIL 2025

Dat	te: 28-04-2025 Dept. No.	Max. : 100 Marks	
Tin	ne: 09:00 AM - 12:00 PM		
SECTION A – K1 (CO1)			
SECTION A - KI (COI)			
	Answer ALL the questions	$(5 \times 1 = 5)$	
1	Fill in the blanks		
a)	Let $\{a_n\}$ be a sequence with $a_{n+1} \ge a_n \ V \ n \in N$ then $\{a_n\}$ is called a	sequence.	
b)	Every monotonically increasing sequence which is bounded above converges to its		
c)	A sequence is a Cauchy sequence if and only if it is		
<u>d)</u>	The maximum number of linear independent vectors in a given matrix is called of the matrix.		
e)	The number of linearly independent vectors required to span the vector space V is called the		
of the vector space.			
SECTION A – K2 (CO1)			
	Answer ALL the questions	$(5 \times 1 = 5)$	
2	True or False	,	
a)	The sequence $(-1)^n$ converges to -1 and $+1$.		
b)			
c)	In Rieman Integral as we increase the number of partitions the lower sum does not decrease.		
d)			
e)	The rank of the matrix $A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 4 & 1 \\ 0 & 1 & 5 \end{bmatrix}$ is 3.		
SECTION B – K3 (CO2)			
	Answer any THREE of the following	$(3 \times 10 = 30)$	
3	(i) Find the maximum value of $\frac{\log x}{x}$, $0 < x < \infty$	(5 Marks)	
	(ii) Evaluate the following limit: $\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x$.	(5 Marks)	
4	Explain the following test for convergence of a series:		
•	(i) D'Alembert's Ratio Test (ii) Cauchy's Root Test (iii) Logarit	thmic Test. (3+3+3)	
	State the comparison between Cauchy's Root test and D'Alembert's r	· · · · · · · · · · · · · · · · · · ·	
5	(i) What are upper and lower Darboux Sums? Explain with an exam		
	(ii) Compare $L(P_1,f)$ with $L(P_2,f)$ and $U(P_1,f)$ with $U(P_2,f)$ for the fund	etion $f(x) = x^2$ on [0,1]	
	where $P_1 = \{0, 1/4, 2/4, 3/4, 1\}$ and $P_2 = \{0, 1/5, 1/4, 2/4, 3/4, 1\}$		
6	(i) State Cayley-Hamilton theorem and demonstrate its use in finding		
	(ii) Find the minimal polynomial of the following matrix:	(6 Marks)	
	$A = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 5 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$		
7	Let M_{2x2} be the set of all 2x2 matrices with real entries. Show that M	I_{2x2} is a vector space.	

SECTION C – K4 (CO3)			
	Answer any TWO of the following	$(2 \times 12.5 = 25)$	
8	(i) Explain Bounded sequence with an example.	(3 Marks)	
	(ii) Explain Limit of a sequence with a suitable diagram.	(3 Marks)	
	(iii) Explain Monotonic sequence with an example.	(3 Marks)	
	(iv) Explain Oscillatory sequence with an example.	(3.5 Marks)	
9	(i) Discuss the convergence or divergence of the following series		
	$(a) 1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + \cdots \qquad (b) \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n , x > 0. $ (4+4 Marks)		
	(ii) State Leibnitz's Test on alternating series and establish the convergence, absolute		
	convergence of the following series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ Reduce the quadratic form $x_1^2 + 3x_2^2 + 5x_3^2 + x_1^2 + 4x_1x_2 + 4x_1x_3 + 10x_2x_3$ to the o	(4.5 Marks)	
10	Reduce the quadratic form $x_1^2 + 3x_2^2 + 5x_3^2 + x_1^2 + 4x_1x_2 + 4x_1x_3 + 10x_2x_3$ to the	canonical form.	
	and hence find the rank, index, signature and the type of the given quadratic form.		
11	(i) Discuss Gram-Schmidt orthogonalization process.	(4 Marks)	
	(ii) Let $B = \{(2,1,0,-1), (1,0,2,-1), (0,-2,1,0)\}$ is a linearly independent set in \mathbb{R}^4 . Let $U = \text{Span}(B)$.		
	Determine a orthonormal basis for U using Gram-Schmidt orthogonalization process. (8.5 Marks)		
SECTION D – K5 (CO4)			
	Answer any ONE of the following	$(1 \times 15 = 15)$	
12	(i) Show that the sequence $a_n = \left(1 + \frac{1}{n}\right)^n$ is bounded above by 3 and bounded below by 2 (5 Marks)		
	(ii) Show that the sequence $\{a_n\}$ defined by $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2a_n}$ converges to 2.	(5 Marks)	
	(iii) Show that (a) $\lim_{n \to \infty} \left(\frac{n!}{n^n} \right) = 0$ (b) $\lim_{n \to \infty} \left(\frac{n^n}{n!} \right)^{\overline{n}} = e$.	(2+3 Marks)	
13	(i) Use diagonalization method to determine whether the given matrix A is diagonalizable, if so determine the diagonal matrix D such that $D = P^{-1}AP$.		
	$A = \begin{bmatrix} 19 & -48 \\ 8 & -21 \end{bmatrix}$	(7 Marks)	
	$\begin{bmatrix} 1 & 1 & 8 & -21 \end{bmatrix}$ (ii) Which among the following are linear transformation? Justify your answer.	,	
		(8 Marks)	
	(a) $T(x,y) = (2x,x+y)$ (b) $T(x,y) = (x-1,y)$ (c) $T(x,y) = (y,x)$ (d) $T(x,y) = (x,y^2)$		
SECTION E – K6 (CO5)			
	Answer any ONE of the following	$(1 \times 20 = 20)$	
14	(i) If $f:[a,b] \to R$ is a bounded function and $P \in P[a,b]$ then prove	(5 Marks)	
	$m(b-a) \le L(P,f) \le U(P,f) \le M(b-a)$		
	(ii) If $f:[a,b] \to R$ is a bounded function and $P,P' \in P[a,b]$ such that $P \subset P'$ then prove		
	$(a)L(P,f) \le L(P',f) \qquad (b)U(P,f) \ge U(P',f)$	(5+5 Marks)	
	(iii) If f is defined on $[0,1]$ by $f(x) = x$ then show that	(5 Marks)	
	$Sup\{L(P,f)\} = Inf\{U(P,f)\} = 1/2$		
15	(i) Determine the eigen values and eigen vectors of the following matrix	(15 Marks)	
	$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$ and hence establish spectral decomposition of A.		
	(ii) Show that the vectors $(2,1,1,4)$, $(1,3,1,6)$, $(1,1,4,6)$, $(1,2,2,4)$ are linearly independent	dent. (5 Marks)	

##